
Resilient
web design

by Jeremy Keith

Resilient Web Design was written and produced by Jeremy

Keith, and typeset in �� Book.

Licensed under a Creative Commons Attribution‐ShareAlike 4.0

International License.

R E S I L I E N T W E B D E S I G N

Introduction

W��� � ����� ����
Resilient Web Design, you might think that this is a handbook

for designing robust websites. This is not a handbook. It’s

more like a history book.

Marshall McLuhan once said:

But in the world of web design, we are mostly preoccupied

with the here and now. When we think beyond our present

moment, it is usually to contemplate the future—to imagine

the devices, features, and interfaces that don’t yet exist. We

don’t have time to look back upon our past, and yet the

history of web design is filled with interesting ideas.

The World Wide Web has been around for long enough now

that we can begin to evaluate the twists and turns of its

evolution. I wrote this book to highlight some of the

approaches to web design that have proven to be resilient. I

didn’t do this purely out of historical interest (although I am

fascinated by the already rich history of our young industry).

In learning from the past, I believe we can better prepare for

the future.

We look at the present through a rear‐view mirror. We

march backwards into the future.“ ”

You won’t find any code in here to help you build better

websites. But you will find ideas and approaches. Ideas are

more resilient than code. I’ve tried to combine the most

resilient ideas from the history of web design into an approach

for building the websites of the future.

I hope you will join me in building a web that lasts; a web

that’s resilient.

R E S I L I E N T W E B D E S I G N

� � � � � � � 1 :

Foundations

T�� ������� �� �����
civilisation is a tale of cumulative effort. Each generation

builds upon the work of their forebears. Sometimes the work

takes a backward step. Sometimes we wander down dead ends.

But we struggle on. Bit by bit our species makes progress.

Whether the progress is incremental or a huge leap forward, it

is always borne upon the accomplishments of those who came

before us.

Nowhere is this layered nature of progress more apparent than

in the history of technology. Even the most dramatic bounds

in technological advancement are only possible when there is

some groundwork to build upon.

Gutenberg’s printing press would not have been invented if it

weren’t for the work already done in creating the screw press

used for winemaking. Technologies aren’t created in isolation.

They are imprinted with the ghosts of their past.

The layout of the ������ keyboard for your computer—and

its software equivalent on your phone—is an echo of the

design of the first generation of typewriters. That arrangement

of keys was chosen to reduce the chances of mechanical pieces

of metal clashing as they sprang forward to leave their mark

on the paper.

The hands on a clock face move in a clockwise direction only

because that’s the direction that the shadow cast by a sundial

moves over the course of a day in the northern hemisphere.

Had history turned out differently, with the civilisation of the

southern hemisphere in the ascendent, then the hands on our

clocks would today move in the opposite direction. As for

why those clocks carve out the time in periods of 24 hours,

each with 60 minutes, with each minute having 60 seconds,

that’s thanks to an ancient Sumerian civilisation. They hit

upon using the number 60 as their base for counting and

commerce. It’s the lowest number that can be equally divided

by the first six numbers. That sexagesimal way of counting is

still with us today in the hours, minutes, and seconds that we

use as conceptual models for subdividing one rotation of

our planet.

‑

These echoes of the past reverberate in the present even when

their usefulness has been outlived. You’ll still sometimes see a

user interface that displays an icon of a Compact Disc or vinyl

record to represent music. That same interface might use the

image of a 3½ inch floppy disk to represent the concept of

saving data. The reason why floppy disks wound up being 3½

inches in size is because the disk was designed to fit into a shirt

pocket. The icons in our software interfaces are whispering

stories to us from the history of clothing and fashion.

Let’s share what we know

Scientific progress would be impossible without a shared

history of learning to build upon. As Sir Isaac Newton put it,

if we have seen further it is by standing on the shoulders

of giants.

When knowledge is passed from one generation to the next,

theories become more refined, units of measurement become

standardised, and experiments increase in precision.

Right now humanity’s most precise experiments are being

conducted beneath the border between Switzerland and

France. This is the home of ����, the European Organisation

for Nuclear Research. In the 16‐mile wide ring of its Large

Hadron Collider, protons are being smashed together at

velocities approaching the speed of light. Our primate species

is recreating the conditions from the start of our universe. The

��� is the most complex piece of machinery that has ever

been built.

The awe‐inspiring engineering of the ��� is matched by the

unprecedented levels of international co‐operation behind

����. The particle accelerator became operational in the first

decade of the 21st century but the groundwork was laid more

than half a century before. That was when a group of nations

came together to create the ���� Convention, dedicating

resources and money towards pure scientific research. The

only return on investment they expected was in the currency

of knowledge.

This groundwork created a unique environment free from the

constraints of national, economic, and social hierarchies. Nobel

prize‐winning physicists collaborate with students on summer

internships. If there is an element of social categorisation at

����, it is only between theorists and experimentalists. The

theorists are the ones with blackboards in their offices. The

experimentalists are the ones with computers. They have to

deal with a lot of data. Even before the Large Hadron Collider

was switched on, managing information was a real challenge

at ����.

Enter Tim Berners‐Lee, a computer scientist from England

who found himself working at ���� in the 1980s. At the

beginning of that decade, he started a personal project to get to

grips with managing information. The resulting software was

called �������, named for a Victorian manual of domestic life

called Enquire Within Upon Everything.

By the end of the ’80s, Tim Berners‐Lee was ready to tackle

the thorny problem of information management on a larger

scale. In order to get buy‐in at ����, he produced an

unassuming document with the title Information Management:

A Proposal. Fortunately his supervisor, Mike Sendall,

recognised the potential of the idea and gave the go‐ahead by

scrawling the words “vague but exciting” across the top of the

paper. That proposal would become the World Wide Web.

Net value

Today we think of the World Wide Web as one of the

greatest inventions in the history of communication, but to

the scientists at ���� it is merely a byproduct. When you’re

dealing in cosmological timescales and investigating the very

building blocks of reality itself, the timeline of humanity’s

relationship with technology is little more than a

rounding error.

When Tim Berners‐Lee decided to take on the problem of

information management at ����, the internet was already

established as part of the infrastructure there. This network of

networks was first created in the 1960s and the early adopters

were universities and scientific institutions.

These nodes were already physically connected via telephone

wires. Rather than build an entirely new network from

scratch, it made sense to reuse what was already there. Once

again, a new technology was only made possible by the

existence of an older one. In the nineteenth century the world

was technologically terraformed for the telegraph. Through

astonishing feats of engineering, our planet was wired up with

undersea cables. Those same cables would later be repurposed

to carry telephone signals. Later again, they would carry the

digital ones and zeros of the internet. Today those signals are

transmitted via pulses of light travelling through fibre‐optic

cables. Those fibre‐optic cables follow the same paths across

the ocean floor as their telegraphic antecedents.

The internet has no centre. This architectural decision gives

the network its robustness. You may have heard that the

internet was designed to resist a nuclear attack. That’s not

entirely correct. It’s true that the project began with military

considerations. The initial research was funded by �����, the

Defense Advanced Research Projects Agency. But the

engineers working on the project were not military personnel.

Their ideals had more in common with the free‐speech

movement than with the military‐industrial complex. They

designed the network to route around damage, but the

damage they were concerned with was censorship, not a

nuclear attack.

The open architecture of the internet reflected the liberal

worldview of its creators. As well as being decentralised, the

internet was also deliberately designed to be a dumb network.

That’s its secret sauce. The protocols underlying the

transmission of data on the internet—���/��—describe how

packets of data should be moved around, but those protocols

care not a whit for the contents of the packets. That allows the

internet to be the transport mechanism for all sorts of

applications: email, Telnet, ���, and eventually the

World Wide Web.

Hyperspace

The web uses ����, the HyperText Transfer Protocol, to send

and receive data. This data is uniquely identified with a ���.

Many of these ���s identify pages made of ����, the

HyperText Markup Language. The killer feature of the web

lies here in ����’s humble � element. The A stands for

Anchor. Its ���� attribute allows you to cast off from within

one ��� out to another ���, creating a link that can be

traversed from one page to the other. These links turn the web

from being a straightforward storage and retrieval system into

a hypertext system.

Tim Berners‐Lee did not invent hypertext. That term was

coined by Ted Nelson, a visionary computer scientist who was

working on his own hypertext system called Xanadu. Both

Ted Nelson and Tim Berners‐Lee were influenced by the

ideas set out by Vannevar Bush in his seminal 1945 essay, As

We May Think. Bush, no doubt, was in turn influenced by the

ideas of Belgian informatician Paul Otlet. Each one of these

giants in the history of hypertext was standing on the

shoulders of the giants that had come before them. Giants all

the way down.

Compared to previous grand visions of hypertext, links on the

web are almost laughably simplistic. There is no two‐way

linking. If you link to another ���, but the page at that ��� is

moved or destroyed, you have no way of knowing.

But the simplicity of the web turned out to be the secret of

its success.

Tim Berners‐Lee assumed that most ���s would point to

non‐���� resources; word‐processing documents,

spreadsheets, and all sorts of other computer files. ���� could

then be used to create simple index pages that point to these

files using links. Because ���� didn’t need to do very much, it

had a limited vocabulary. That made it relatively easy to learn.

To Tim Berners‐Lee’s surprise, people began to create fully‐

fledged documents in ����. Instead of creating content in

other file formats and using ���� to link them up, people

began writing content directly in ����.

Mark me up, mark me down

���� wasn’t the first markup language to be used at ����.

Scientists there were already sharing documents written in a

flavour of ����—Standard Generalized Markup Language.

Tim Berners‐Lee took this existing vocabulary from ����

���� and used it as a starting point for his new markup

language. Once again, it made sense to build on what people

were already familiar with rather than creating something

from scratch.

The first version of ���� contained a grand total of 21

elements. Many of those elements are still with us today

—�����, �, ��, ��, �1, �2, etc., and of course, the � element.

Others have fallen by the wayside—�������, ���������,

�������, ��1, ��2, etc., as well as a proprietary element called

������ that only made sense if you were using a computer

running the NeXTSTEP operating system. That’s the �� that

Tim Berners‐Lee was using when he created ����, ����, and

the world’s first web browser, called confusingly

WorldWideWeb, which only worked on NeXT machines.

To demonstrate the power and interoperability of the web, a

cross‐platform browser was needed; one that anybody could

install and use, no matter what operating system they were

using. The task of building that browser fell to an

undergraduate at ���� named Nicola Pellow. She created the

Line Mode Browser. It was simple but powerful. It didn’t

have the same level of interactivity as the WorldWideWeb

browser, but the fact that it could be run on any machine

meant that the web was now accessible to everyone.

As soon as there were two web browsers in the world,

interoperability and backwards compatibility became

important issues. For instance, what should the Line Mode

Browser do when it encounters an ���� element it doesn’t

understand, such as ������?

The answer can be found in the sparse documentation that

Tim Berners‐Lee wrote for his initial collection called HTML

Tags. Under the heading “Next ��” he wrote:

This seemingly innocuous decision would have far‐reaching

consequences for the future of the World Wide Web.

‑

‑

Browser software may ignore this tag.“ ”

R E S I L I E N T W E B D E S I G N

� � � � � � � 2 :

Materials

A� ��� ���� �� ��������

grandmother to suck eggs, I’d like you to think about what

happens when a browser parses an ���� element. Take, for

example, a paragraph element with some text inside it. There’s

an opening � tag, a closing � tag, and between those tags,

there’s the text.

<p>some text</p>

A web browser encountering this element will display the text

between the opening and closing tags. Now consider what

happens when that same web browser encounters an element

it doesn’t recognise.

<marklar>some more text</marklar>

Once again, the browser displays the text between the opening

and closing tags. What’s interesting here is what the browser

doesn’t do. The browser does not throw an error. The browser

does not stop parsing the ���� at this point, refusing to go any

further. Instead, it simply ignores the tags and displays the

content within.

This liberal attitude to errors allowed the vocabulary of ����

to grow over time from the original 21 elements to the 121

elements in ����5. Whenever a new element is introduced to

����, we know exactly how older browsers will treat it; they

will ignore the tags and display the content.

That’s a remarkably powerful feature. It allows browsers to

implement new ���� features at different rates. We don’t

have to wait for every browser to recognise a new element.

Instead we can start using the new element at any time, secure

in the knowledge than non‐supporting browsers won’t choke

on it.

<main>this text will display in any
browser</main>

If web browsers treat all tags the same way—displaying their

contents—then what’s the point of having a vocabulary of

elements in ����?

The meaning of markup

Some ���� elements are literally meaningless. The ����

element says nothing about the contents within it. As far as a

web browser is concerned, you may as well use a non‐existent

������� element. But that’s the exception. Most ����

elements exist for a reason. They have been created and agreed

upon in order to account for specific situations that authors

like you and I are likely to encounter.

There are obviously special elements, like the � element, that

come bundled with superpowers. In the case of the � element,

its superpower lies in the ���� attribute that allows us to link

out to any other resource on the web. Other elements like

�����, ������, ��������, and ������ have their own

superpowers, allowing people to enter data and submit it to a

web server.

Then there are elements that describe the kind of content they

contain. The contents of a � element should be considered a

paragraph of text. The contents of an �� element should be

considered as an item in a list. Browsers display the contents of

these elements with some visual hints as to their meaning.

Paragraphs are displayed with whitespace before and after

their content. List items are displayed with bullet points or

numbers before their content.

The early growth of ����’s vocabulary was filled with new

elements that provided visual instructions to web browsers:

���, �����, ������, ����. In fact, the visual instructions were

the only reason for those elements to exist—they provided no

hint as to the meaning of the content they contained. ���� was

in danger of becoming a visual instruction language instead of

a vocabulary of meaning.

A matter of style

Håkon Wium Lie was working at ���� at the same time as

Tim Berners‐Lee. He immediately recognised the potential of

the World Wide Web and its language, ����. He also realised

that the expressive power of the language was in danger of

being swamped by visual features. Lie proposed a new format

to describe the presentation of ���� documents:

Cascading Style Sheets.

He was quickly joined by the Dutch programmer Bert Bos.

Together they set about creating a syntax that would be

powerful enough to handle the demands of designers, while

remaining simple enough to learn quickly. They succeeded.

Think for a moment of all the sites out there on the web.

There’s a huge variation in visual style: colour schemes,

typographic treatments, textures and layouts. All of that

variety is made possible by one simple pattern that describes all

the ��� ever written:

selector {
 property: value;
}

That’s it.

��� shares ����’s forgiving attitude to errors. If a web browser

encounters a selector it doesn’t understand, it simply skips over

whatever is between that selector’s curly braces. If a browser

sees a property or a value it doesn’t understand, it just ignores

that particular declaration. The browser does not throw an

error. The browser does not stop parsing the ��� at this point,

refusing to go any further.

marklar {
 marklar: marklar;
}

Just as with ����, this loose error‐handling has allowed ��� to

grow over time. New selectors, new properties, and new

values have been added to the language’s vocabulary over the

years. Whenever a new feature lands in ���, designers and

developers know that they can safely use it, even if it isn’t yet

widely supported in browsers. They can rest assured that old

browsers will react to new features with

complete indifference.

Just because a language is elegant and well‐designed doesn’t

mean that people will use it. ��� arrived later than ����.

Designers didn’t spend the intervening years waiting patiently

for a way to style their documents on the web. They used

what was available to them.

Killing it

In 1996 David Siegel published a book entitled Creating Killer

Websites. In it, he outlined a series of ingenious techniques for

wrangling eye‐catching designs out of the raw material

of ����.

One technique involved using a transparent ���, just one pixel

by one pixel in size. If this was inserted into a page as an ���

element, but given precise values in its ����� and ������

attributes, designers could control the amount of whitespace

in their designs.

Another technique used the ����� element. This element—

along with its children �� and ��—was intended to describe

tabular data. But with the right values applied to the widths

and heights of table cells, it could be used to recreate just

about any desired layout.

These were hacks; clever solutions to tricky problems. But

they had unfortunate consequences. Designers were treating

���� as a tool for the appearance of content instead of a

language for describing the meaning of content. ��� was a

solution to this problem, if only designers could be convinced

to use it.

Browser wars

One of the reasons why web designers weren’t using ��� was

the lack of browser support. Back then there were two major

browsers competing for the soul of the web: Microsoft

Internet Explorer and Netscape Navigator. They were

incompatible by design. One browser would invent a new

���� element or attribute. The other browser would invent

their own separate element or attribute to do exactly the

same thing.

Perhaps the thinking behind this strategy was that web

designers would have to choose which proprietary features

they were going to get behind, like children being forced to

choose between parents. In reality web designers had little

choice but to write for both browsers which meant doing

twice the work.

A group of web designers decided enough was enough. They

gathered together under the banner of the Web Standards

Project and began lobbying Microsoft and Netscape to

abandon their proprietary ways and adopt standards such

as ���.

The tide began to turn with the launch of Internet Explorer 5

for the Mac, a browser that shipped with impressive ���

support. If this was the future of web design, life was about to

get a lot more productive and creative.

Some forward‐thinking web designers caught the ��� bug

early. They redesigned their websites using ��� for layout

instead of using �����s and spacer ���s. True to the founding

spirit of the web, they shared what they were learning and

encouraged others to make the switch to ���.

Perhaps the best demonstration of the power of ��� was a

website called the CSS Zen Garden, created by Dave Shea. It

was a showcase of beautiful and varied designs, all of them

accomplished with ���. Crucially, the ���� remained

the same.

Seeing the same ���� document styled in a multitude of

different ways drove home one of the beneficial effects of ���:

separation of concerns.

Coupling

In any system, from urban infrastructure to a computer

program, the designers of that system can choose the degree to

which the pieces of the system depend on one another. In a

tightly‐coupled system, every piece depends on every piece. In

a loosely‐coupled system, all the pieces are independent, with

little to no knowledge of the other pieces.

In a tightly‐coupled system, each part of the system can make

assumptions about the other parts. These systems can be

designed quite quickly, but at a price. They lack resilience. If

one piece fails, it could take the whole system with it.

Designing a loosely‐coupled system can take more work. The

payoff is that the overall result is more resilient to failure.

Individual parts of the system can be swapped out with a

minimum of knock‐on effects.

The hacks pioneered by David Siegel tightly coupled structure

and presentation into a single monolithic ���� file. The

adoption of ��� eased this dependency, bringing the web closer

to the modular approach of the ���� philosophy. The

presentational information could be moved into a separate file:

a style sheet. That’s how a single ���� document at the CSS

Zen Garden could have so many different designs applied to it.

The style sheet still needs to have some knowledge of the

���� document’s structure. Quite often, “hooks” are added

into the markup to make it easier to style: specific values of

����� or �� attributes, for example. So ���� and ��� aren’t

completely decoupled. They form a partnership but they also

have an arrangement. The markup document might decide

that it wants to try seeing other style sheets sometimes.

Meanwhile, the style sheet could potentially be applied to

other documents. They are loosely coupled.

Dancing about architecture

It takes time for a discipline to develop its own design values.

Web design is a young discipline indeed. While we slowly

begin to form our own set of guiding principles, we can look

to other disciplines for inspiration.

The world of architecture has accrued its own set of design

values over the years. One of those values is the principle of

material honesty. One material should not be used as a

substitute for another. Otherwise the end result is deceptive.

Using �����s for layout is materially dishonest. The �����

element is intended for marking up the structure of tabular

data. The end result of using �����s, ���� elements, and

spacer ���s is a façade. At first glance everything looks fine, but

it won’t stand up to scrutiny. As soon as such a website is

stress‐tested by actual usage across a range of browsers, the

façade crumbles.

Using ��� for presentation is materially honest—that’s the

intended use of ���. It also allows ���� to be materially

honest. Instead of trying to fulfil two roles—structure and

presentation—���� can return to fulfilling its true purpose,

marking up the meaning of content.

It’s still possible to use (or abuse) ��� to be materially

dishonest. For the longest time, there was no easy way to add

rounded corners to an element using ���. Instead, web

designers found ways to hack around the problem, putting

background images on the element to simulate the same end

effect. It worked up to a point, but just like the spacer ���

hack, it was a façade. Then the border‐radius property

arrived. Now designers can have their rounded corners in a

materially honest way.

Crucially, designers were able to use new properties like

border‐radius long before every web browser supported

them. That’s all thanks to the liberal error‐handling model of

���. Newer browsers would display the rounded corners.

Older browsers would not throw an error. Older browsers

would not stop parsing the ��� and refuse to parse any further.

They would simply ignore the instructions they didn’t

understand and move on. No harm, no foul.

Of course this means that the resulting website will look

different in different browsers. Some people will see rounded

corners. Others won’t.

And that’s okay.

R E S I L I E N T W E B D E S I G N

� � � � � � � 3 :

Visions

D����� ���� �������. U����
colour, typography, hierarchy, contrast, and all the other tools

at their disposal, designers can take an unordered jumble of

information and turn it into something that’s easy to use and

pleasurable to behold. Like life itself, design can win a small

victory against the entropy of the universe, creating pockets of

order from the raw materials of chaos.

The Book of Kells is a beautifully illustrated manuscript

created over 1200 years ago. It’s tempting to call it a work of

art, but it is a work of design. The purpose of the book is to

communicate a message; the gospels of the Christian religion.

Through the use of illustration and calligraphy, that message is

conveyed in an inviting context, making it pleasing to behold.

Design works within constraints. The Columban monks who

crafted the Book of Kells worked with four inks on vellum, a

material made of calfskin. The materials were simple but

clearly defined. The cenobitic designers knew the hues of the

inks, the weight of the vellum, and crucially, they knew the

dimensions of each page.

Prints and the revolution

Materials and processes have changed and evolved over the

past millennium or so. Gutenberg’s invention of movable type

was a revolution in production. Whereas it would have taken

just as long to create a second copy of the Book of Kells as it

took to create the first, multiple copies of the Gutenberg bible

could be produced with much less labour. Even so, many of

the design patterns such as drop caps and columns were carried

over from illuminated manuscripts. The fundamental design

process remained the same: knowing the width and height of

the page, designers created a pleasing arrangement of elements.

The techniques of the print designer reached their zenith in

the 20th century with the rise of the Swiss Style. Its structured

layout and clear typography is exemplified in the work of

designers like Josef Müller‐Brockmann and Jan Tschichold.

They formulated grid systems and typographic scales based on

the preceding centuries of design.

Knowing the ratio of the dimensions of a page, designers

could position elements with maximum effect. The page is a

constraint and the grid system is a way of imposing order on it.

Taking your talent to the web

When the web began to conquer the world in the 1990s,

designers started migrating from paper to pixels. David

Siegel’s Creating Killer Websites came along at just the right

time. Its clever ����� and ��� hacks allowed designers to

replicate the same kind of layouts that they had previously

created for the printed page.

Those ����� layouts later became ��� layouts, but the

fundamental thinking remained the same: the browser

window—like the page before it—was treated as a known

constraint upon which designers imposed order.

There’s a problem with this approach. Whereas a piece of

paper or vellum has a fixed ratio, a browser window could be

any size. There’s no way for a web designer to know in

advance what size any particular person’s browser window

will be.

Designers had grown accustomed to knowing the dimensions

of the rectangles they were designing within. The web

removed that constraint.

If it ain’t fixed, don’t break it

There’s nothing quite as frightening as the unknown. These

words of former �� Secretary of Defense Donald Rumsfeld

should be truly terrifying (although the general consensus at

the time was that they sounded like nonsense):

The ratio of the browser window is just one example of a

known unknown on the web. The simplest way to deal with

this situation is to use flexible units for layout: percentages

rather than pixels. Instead, designers chose to pretend that the

browser dimensions were a known known. They created

fixed‐width layouts for one specific window size.

There are known knowns. There are things we know we

know. We also know there are known unknowns, that is

to say we know there are some things we do not know.

But there are also unknown unknowns—the ones we

don’t know we don’t know.

“

”

In the early days of the web, most monitors were 640 pixels

wide. Web designers created layouts that were 640 pixels

wide. As more and more people began using monitors that

were 800 pixels wide, more and more designers began creating

800 pixel wide layouts. A few years later, that became 1024

pixels. At some point web designers settled on the magic

number of 960 pixels as the ideal width.

It was as though the web design community were

participating in a shared consensual hallucination. Rather than

acknowledge the flexible nature of the browser window, they

chose to settle on one set width as the ideal …even if that

meant changing the ideal every few years.

Not everyone went along with this web‐wide memo.

Dao or dao not

In the year 2000 the online magazine A List Apart published

an article entitled A Dao of Web Design. It has stood the test of

time remarkably well.

In the article, John Allsopp points out that new mediums

often start out by taking on the tropes of a previous medium.

Scott McCloud makes the same point in his book

Understanding Comics:

With that in mind, it’s hardly surprising that web design

began with attempts to recreate the kinds of layouts that

designers were familiar with from the print world. As John

put it:

Each new medium begins its life by imitating its

predecessors. Many early movies were like filmed stage

plays; much early television was like radio with pictures

or reduced movies.

“
”

“

Web design can benefit from the centuries of learning that

have informed print design. Massimo Vignelli, whose work

epitomises the Swiss Style, begins his famous Canon with a list

of The Intangibles including discipline, appropriateness,

timelessness, responsibility, and more. Everything in that list

can be applied to designing for the web. Vignelli’s Canon also

includes a list of The Tangibles. That list begins with

paper sizes.

The web is not print. The known constraints of paper—its

width and height—simply don’t exist. The web isn’t bound by

pre‐set dimensions. John Allsopp’s A Dao Of Web Design

called on practitioners to acknowledge this:

“Killer Web Sites” are usually those which tame the

wildness of the web, constraining pages as if they were

made of paper – Desktop Publishing for the Web.

“
”

The control which designers know in the print medium,

and often desire in the web medium, is simply a function

of the limitation of the printed page. We should embrace

the fact that the web doesn’t have the same constraints,

and design for this flexibility.

“

”

This call to arms went unheeded. Designers remained in their

Matrix‐like consensual hallucination where everyone’s

browser was the same width. That’s understandable. There’s a

great comfort to be had in believing a reassuring fiction,

especially when it confers the illusion of control.

There is another reason why web designers clung to the

comfort of their fixed‐width layouts. The tools of the trade

encouraged a paper‐like approach to designing for the web.

Ship of tools

It’s a poor craftsperson who always blames their tools. And yet

every craftsperson is influenced by their choice of tools. As

Marshall McLuhan’s colleague John Culkin put it, “we shape

our tools and thereafter our tools shape us.”

When the discipline of web design was emerging, there was

no software created specifically for visualising layouts on the

web. Instead designers co‐opted existing tools.

Adobe Photoshop was originally intended for image

manipulation; touching up photos, applying filters,

compositing layers, and so on. By the mid nineties it had

become an indispensable tool for graphic designers. When

those same designers began designing for the web, they

continued using the software they were already familiar with.

If you’ve ever used Photoshop then you’ll know what happens

when you select “New” from the “File” menu: you will be

asked to enter fixed dimensions for the canvas you are about

to work within. Before adding a single pixel, a fundamental

design decision has been made that reinforces the consensual

hallucination of an inflexible web.

Photoshop alone can’t take the blame for fixed‐width

thinking. After all, it was never intended for designing web

pages. Eventually, software was released with the specific goal

of creating web pages. Macromedia’s Dreamweaver was an

early example of a web design tool. Unfortunately it operated

according to the idea of �������: What You See Is What

You Get.

While it’s true that when designing with Dreamweaver, what

you see is what you get, on the web there is no guarantee that

what you see is what everyone else will get. Once again, web

designers were encouraged to embrace the illusion of control

rather than face the inherent uncertainty of their medium.

It’s possible to overcome the built‐in biases of tools like

Photoshop and Dreamweaver, but it isn’t easy. We might like

to think that we are in control of our tools, that we bend them

to our will, but the truth is that all software is opinionated

software. As futurist Jamais Cascio put it, “software, like all

technologies, is inherently political”:

Small wonder then that designers working with the grain of

their tools produced websites that mirrored the assumptions

baked into those tools—assumptions around the ability to

control and tame the known unknowns of the

World Wide Web.

Code inevitably reflects the choices, biases and desires of

its creators.“ ”

Reality bites

By the middle of the first decade of the twenty‐first century,

the field of web design was propped up by

multiple assumptions:

that everyone was browsing with a screen large enough

to view a 960 pixel wide layout;

that everyone had broadband internet access, mitigating

the need to optimise the number and file size of images

on web pages;

that everyone was using a modern web browser with the

latest plug‐ins installed.

A minority of web designers were still pleading for fluid

layouts. I counted myself amongst their number. We were

tolerated in much the same manner as a prophet of doom on

the street corner wearing a sandwich board reading “The End

Is Nigh”—an inconvenient but harmless distraction.

There were even designers suggesting that Photoshop might

not be the best tool for the web, and that we could consider

designing directly in the browser using ��� and ����. That

approach was criticised as being too constraining. As we’ve

seen, Photoshop has its own constraints but those had been

internalised by designers so comfortable in using the tool that

they no longer recognised its shortcomings.

This debate around the merits of designing Photoshop comps

and designing in the browser would have remained largely

academic if it weren’t for an event that would shake up the

world of web design forever.

Stuck inside of mobile

With those words in 2007, Steve Jobs unveiled a mobile

device that could be used to browse the World Wide Web.

An iPod. A phone. And an internet communicator. An

iPod. A phone …are you getting it? These are not three

separate devices. This is one device. And we are calling

it: iPhone.

“
”

Web‐capable mobile devices existed before the iPhone, but

they were mostly limited to displaying a specialised mobile‐

friendly file format called ���. Very few devices could render

����. With the introduction of the iPhone and its

competitors, handheld devices were shipping with modern

web browsers capable of being first‐class citizens on the web.

This threw the field of web design into turmoil.

Assumptions that had formed the basis for an entire industry

were now being called into question:

How do we know if people are using wide desktop

screens or narrow handheld screens?

How do we know if people are browsing with a fast

broadband connection at home or with a slow

mobile network?

How do we know if a device even supports a particular

technology or plug‐in?

The rise of mobile devices was confronting web designers with

the true nature of the web as a flexible medium filled

with unknowns.

The initial reaction to this newly‐exposed reality involved

segmentation. Rather than rethink the existing desktop‐

optimised website, what if mobile devices could be shunted

off to a separate silo? This mobile ghetto was often at a

separate subdomain to the “real” site: m.example.com or

mobile.example.com.

This segmented approach was bolstered by the use of the term

“the mobile web” instead of the more accurate term “the web

as experienced on mobile.” In the tradition of their earlier

consensual hallucinations, web designers were thinking of

mobile and desktop not just as separate classes of device, but as

entirely separate websites.

Determining which devices were sent to which subdomain

required checking the browser’s user‐agent string against an

ever‐expanding list of known browsers. It was a Red Queen’s

race just to stay up to date. As well as being error‐prone, it was

also fairly arbitrary. While it might have once been easy to

classify, say, an iPhone as a mobile device, that distinction

grew more difficult over time. With the introduction of

tablets such as the iPad, it was no longer clear which devices

should be redirected to the mobile ���. Perhaps a new

subdomain was called for—t.example.com or

tablet.example.com—along with a new term like “the tablet

web”. But what about the “�� web” or the “internet‐enabled

fridge web?”

We are one

The practice of creating different sites for different devices just

didn’t scale. It also ran counter to a long‐held ideal called

One Web:

But this doesn’t mean that small‐screen devices should be

served page layouts that were designed for larger dimensions:

If web designers wished to remain true to the spirit of One

Web, they needed to provide the same core content at the

same ��� to everyone regardless of their device. At the same

time, they needed to be able to create different layouts

depending on the screen real‐estate available.

One Web means making, as far as is reasonable, the

same information and services available to users

irrespective of the device they are using.

“

”

However, it does not mean that exactly the same

information is available in exactly the same

representation across all devices.
“

”

The shared illusion of a one‐size‐fits‐all approach to web

design began to evaporate. It was gradually replaced by an

acceptance of the ever‐changing fluid nature of the web.

Positive response

In April of 2010 Ethan Marcotte stood on stage at An Event

Apart in Seattle, a gathering for people who make websites.

He spoke about an interesting school of thought in the world

of architecture: responsive design, the idea that buildings

could change and adapt according to the needs of the people

using the building. This, he explained, could be a way to

approach making websites.

One month later he expanded on this idea in an article called

Responsive Web Design. It was published on A List Apart, the

same website that had published John Allsopp’s A Dao Of Web

Design ten years earlier. Ethan’s article shared the same spirit as

John’s earlier rallying cry. In fact, Ethan begins his article by

referencing A Dao Of Web Design.

Both articles called on web designers to embrace the idea of

One Web. But whereas A Dao Of Web Design was largely

rejected by designers comfortable with their ������� tools,

Responsive Web Design found an audience of designers

desperate to resolve the mobile conundrum.

The adjacent possible

Writer Steven Johnson has documented the history of

invention and innovation. In his book Where Good Ideas Come

From, he explores an idea called “the adjacent possible”:

At every moment in the timeline of an expanding

biosphere, there are doors that cannot be unlocked yet. In

human culture, we like to think of breakthrough ideas as

sudden accelerations on the timeline, where a genius

jumps ahead fifty years and invents something that

normal minds, trapped in the present moment, couldn’t

possibly have come up with. But the truth is that

technological (and scientific) advances rarely break out of

the adjacent possible; the history of cultural progress is,

almost without exception, a story of one door leading to

another door, exploring the palace one room at a time.

“

”

This is why the microwave oven could not have been

invented in medieval France; there are too many preceding

steps required—manufacturing, energy, theory—to make that

kind of leap. Facebook could not exist without the World

Wide Web, which could not exist without the internet,

which could not exist without computers, and so on. Each

step depends upon the accumulated layers below.

By the time Ethan coined the term Responsive Web Design a

number of technological advances had fallen into place. As I

wrote in the foreword to Ethan’s subsequent book on

the topic:

1. Fluid grids. The option to use percentages instead of

pixels has been with us since the days of ����� layouts.

2. Flexible images. Research carried out by Richard Rutter

showed that browsers were becoming increasingly adept

at resizing images. The intrinsic dimensions of an image

need not be a limiting factor.

The technologies existed already: fluid grids, flexible

images, and media queries. But Ethan united these

techniques under a single banner, and in so doing changed

the way we think about web design.

“
”

3. Media queries. Thanks to the error‐handling model of

���, browsers had been adding feature upon feature over

time. One of those features was ��� media queries—the

ability to define styles according to certain parameters,

such as the dimensions of the browser window.

The layers were in place. A desire for change—driven by the

relentless rise of mobile—was also in place. What was needed

was a slogan under which these could be united. That’s what

Ethan gave us with Responsive Web Design.

Changing mindset

The first experiments in responsive design involved

retrofitting existing desktop‐centric websites: converting

pixels to percentages, and adding media queries to remove the

grid layout on smaller screens. But this reactive approach

didn’t provide a firm foundation to build upon. Fortunately

another slogan was able to encapsulate a more

resilient approach.

Luke Wroblewski coined the term Mobile First in response to

the ascendency of mobile devices:

Losing 80% of your screen space forces you to focus. You

need to make sure that what stays on the screen is the

most important set of features for your customers and

your business. There simply isn’t room for any interface

debris or content of questionable value. You need to know

what matters most.

“

”

If you can prioritise your content and make it work within the

confined space of a small screen, then you will have created a

robust, resilient design that you can build upon for larger

screen sizes.

Stephanie and Bryan Rieger encapsulated the mobile‐first

responsive design approach:

In this context, Mobile First is less about mobile devices per

se, and instead focuses on prioritising content and tasks

regardless of the device. It discourages assumptions. In the

past, web designers had fallen foul of unfounded assumptions

about desktop devices. Now it was equally important to avoid

making assumptions about mobile devices.

Web designers could no longer make assumptions about

screen sizes, bandwidth, or browser capabilities. They were left

with the one aspect of the website that was genuinely under

their control: the content.

Echoing A Dao Of Web Design, designer Mark Boulton put

this new approach into a historical context:

The lack of a media query is your first media query.“ ”

“

This content‐out way of thinking is fundamentally different

to the canvas‐in approach that dates all the way back to the

Book of Kells. It asks web designers to give up the illusion of

control and create a materially‐honest discipline for the

World Wide Web.

Relinquishing control does not mean relinquishing quality.

Quite the opposite. In acknowledging the many unknowns

involved in designing for the web, designers can craft in a

resilient flexible way that is true to the medium.

Texan web designer Trent Walton was initially wary of

responsive design, but soon realised that it was a more honest,

authentic approach than creating fixed‐width Photoshop

mock‐ups:

Embrace the fluidity of the web. Design layouts and

systems that can cope to whatever environment they may

find themselves in. But the only way we can do any of

this is to shed ways of thinking that have been shackles

around our necks. They’re holding us back. Start

designing from the content out, rather than the canvas in.

“

”

“

For years, web design was dictated by the designer. The user

had no choice but to accommodate the site’s demand for a

screen of a certain size or a network connection of a certain

speed. Now, web design can be a conversation between the

designer and the user. Now, web design can reflect the

underlying principles of the web itself.

On the twentieth anniversary of the World Wide Web, Tim

Berners‐Lee wrote an article for Scientific American in which

he reiterated those underlying principles:

My love for responsive centers around the idea that my

website will meet you wherever you are—from mobile to

full‐blown desktop and anywhere in between.
“

”

The primary design principle underlying the Web’s

usefulness and growth is universality. The Web should be

usable by people with disabilities. It must work with any

form of information, be it a document or a point of data,

and information of any quality—from a silly tweet to a

scholarly paper. And it should be accessible from any

kind of hardware that can connect to the Internet:

stationary or mobile, small screen or large.

“

”

R E S I L I E N T W E B D E S I G N

� � � � � � � 4 :

Languages

J�� P����� ��� ��� �� ���

engineers working on the �������, the precursor to the

internet. He wanted to make sure that the packets—or

“datagrams”—being shuttled around the network were

delivered in the most efficient way. He came to realise that a

lax approach to errors was crucial to effective

packet switching.

If a node on the network receives a datagram that has errors,

but is still understandable, then the packet should be processed

anyway. Conversely every node on the network should

attempt to send well‐formed packets. This line of thinking

was enshrined in the Robustness Principle, also known as

Postel’s Law:

If that sounds familiar, it’s because that’s the way that web

browsers deal with ���� and ���. Even if there are errors in

the ���� or ���, the browser will still attempt to process the

information, skipping over any pieces that it can’t parse.

Be conservative in what you send; be liberal in what

you accept.“ ”

Declaration

���� and ��� are both examples of declarative languages. An

author writing in a declarative language describes a desired

outcome without providing step‐by‐step instructions to the

computer processing the file. With ����, you can describe the

nature of the content—paragraphs, headings, form fields, etc.

—without having to explain exactly what the browser should

do with that information. With ���, you can describe the

desired appearance of the content—colours, borders, etc.—

without having to write a program to apply those styles.

Most programming languages are not declarative, they are

imperative. Perl, Java, C++ …these are all examples of

imperative languages. If you’re writing in one of those

languages, you must provide precise instructions to the

computer interpreting your code.

Imperative languages provide you with more power and

precision than declarative languages. That comes at a price.

Imperative languages tend to be harder to learn than

declarative languages. It’s also harder to apply Postel’s Law to

imperative languages. If you make a single mistake—one

misplaced comma or semi‐colon—the entire program may fail.

A misspelt tag in ���� or a missing curly brace in ��� can also

cause headaches, but imperative programs must be well‐

formed or they won’t run at all.

Imperative languages such as ���, Ruby, and Python can be

found on the servers powering the World Wide Web, reading

and writing database records, processing input, and running

complex algorithms. You can choose just about any

programming language you want when writing server‐side

code. Unlike the unknowability of the end user’s web

browser, you have control over your server’s capabilities.

If you want to write imperative code that runs in a web

browser, you only have one choice: JavaScript.

Scripting

The idea of executing a program from within a web page is as

old as the web itself. Here’s an early email to the www‐talk

mailing list:

Tim Berners‐Lee, creator of the World Wide Web,

responded:

That was in 1992. The universal interpreted programming

language finally arrived in 1996. It was written in ten days by a

programmer at Netscape named Brendan Eich.

I would like to know, whether anybody has extended

WWW such, that it is possible to start arbitrary programs

by hitting a button in a WWW browser.

“

”

Very good question. The problem is that of programming

language. You need something really powerful, but at the

same time ubiquitous. Remember a facet of the web is

universal readership. There is no universal interpreted

programming language.

“

”

The language went through a few name changes. First it was

called Mocha. Then it was officially launched as LiveScript.

Then the marketing department swept in and renamed it

JavaScript, hoping that the name would ride the wave of hype

associated with the then‐new Java language. In truth, the

languages have little in common. Java is to JavaScript as ham is

to hamster.

Patterns of progress

JavaScript gave designers the power to update web pages even

after they had loaded. Two common uses soon emerged:

rollovers and form validation.

Swapping out images when someone hovers their cursor over

a link might not seem like a sensible use of a brand new

programming language, but back in the nineties there was no

other way of creating hover effects.

Before JavaScript came along, a form would have to be

submitted to a web server before you could check to make

sure that all the required fields were filled in, or that the

information that was entered corresponded to an

expected format.

Both of those use cases still exist, but now there’s no need to

reach for JavaScript. You can create rollover effects using the

:hover pseudo‐class in ���. You can validate form fields

using the �������� and ���� attributes in ����.

That’s a pattern that repeats again and again: a solution is

created in an imperative language and if it’s popular enough, it

migrates to a declarative language over time. When a feature

is available in a declarative language, not only is it easier to

write, it’s also more robust.

The loose error‐handling of ���� and ��� means that many

authoring mistakes or browser support issues are handled

gracefully; the browser simply ignores what it doesn’t

understand and carries on. That’s often good enough. By

contrast, if you give a browser some badly‐formed JavaScript

or attempt to use an unsupported JavaScript feature, not only

will the browser throw an error, it will stop parsing the script

at that point and refuse to go any further.

Responsibility

JavaScript gave web designers the power to create websites

that were slicker, smoother, and more reactive. The same

technology also gave web designers the power to create

websites that were sluggish, unwieldy, and more difficult

to use.

One of the earliest abuses of JavaScript came (unsurprisingly)

from the advertising industry, a business whose very raison

d’être is often at odds with the goals of people trying to

achieve a task as quickly as possible. JavaScript allows you to

create new browser windows, something that previously could

only be done by the user. A young developer named Ethan

Zuckerman realised that he could spawn a new window with

an advertisement in it. That allowed advertisers to put their

message in front of website visitors. Not only that, but

JavaScript could be used to spawn multiple windows, some of

them visible, some of them hidden behind the current

window. It was a fiendish solution.

Twenty years later, Zuckerman wrote:

“

Pop‐up (and pop‐under) windows became so intolerable that

browsers had to provide people with a means to block them.

The advertising industry later found other ways to abuse

JavaScript. Ad‐supported online publishers injected bloated

and inefficient JavaScript into their pages, making them slow

to load. JavaScript was also used to track people from site to

site. People reached for ad‐blocking software to combat this

treatment. Eventually ad blocking was built into browsers and

operating systems to give us the ability to battle

excessive JavaScript.

Web designers would do well to remember what the

advertising industry chose to ignore: on the web, the user has

the final say.

I wrote the code to launch the window and run an ad in

it. I’m sorry.“ ”

2.0

The rise of JavaScript was boosted in 2005 with the

publication of an article entitled Ajax: A New Approach to Web

Applications by Jesse James Garrett. The article put a name to a

technique that was gaining popularity. Using a specific subset

of JavaScript, it was possible for a web browser to send and

receive data from a web server without refreshing the whole

page. The result was a smoother user experience.

The term Ajax was coined at the same time that another

neologism was in the ascendent. Tim O’Reilly used the phrase

Web 2.0 to describe a new wave of web products and services.

Unlike Ajax, it was difficult to pin down a definition of Web

2.0. For business people, it meant new business models. For

graphic designers, it meant rounded corners and gradients. For

developers, it meant JavaScript and Ajax.

Whatever its exact meaning, the term Web 2.0 captured a

mood and a feeling. Everything was going to be different now.

The old ways of thinking about building for the web could be

cast aside. Treating the web as a limitless collection of

hyperlinked documents was passé. The age of web apps was

at hand.

Appiness

In the 1964 supreme court case Jacobellis versus Ohio, Justice

Potter Stewart provided this definition of obscenity:

The same could be said for Web 2.0, or for the term “web

app.” We can all point to examples of web apps, but it’s

trickier to provide a definition for the term. Web apps allow

people to create, edit, and delete content. But these tasks were

common long before web apps arrived. People could fill in

forms and submit them to a web server for processing. Ajax

removed the necessity for that round trip to the server.

Perhaps the definition of a web app requires some

circular reasoning:

JavaScript is a requirement for a web app, and

a web app is a website that requires JavaScript to work.

I know it when I see it.

“ ”

In that case, building web apps depends on a fundamental

assumption: JavaScript must be available and reliable. But

because of its imperative nature, JavaScript tends to be more

fragile than a declarative language like ����. Relying on

JavaScript might not be such a safe assumption after all.

Unforgiven

����’s loose error‐handling allowed it to grow in power over

time. It also ensured that the language was easy to learn. Even

if you made a mistake, the browser’s implementation of

Postel’s Law ensured that you’d still get a result. Surprisingly,

there was an attempt to remove this superpower from ����.

After the standardisation of ���� version 4 in 1999, the

World Wide Web Consortium published ����� 1.0. This

reformulated ���� according to the rules of the ��� data

format. Whereas ���� can have uppercase or lowercase tag

names and attributes, ��� requires them to be all lowercase.

There were some other differences: all attributes had to be

quoted, and standalone elements like ��� or �� required a

closing slash.

����� 1.0 didn’t add any new features to the language. It was

simply a stricter way of writing markup. ����� 2.0 was a

different proposition. Not only would it remove established

elements like ���, it would also implement ���’s draconian

error‐handling model. If there is a single error in an ���

document—one unquoted attribute or missing closing slash—

then the parser should stop immediately and refuse to

render anything.

����� 2.0 died on the vine. Its theoretical purity was roundly

rejected by the people who actually made websites for a living.

Web designers rightly refused to publish in a format that

would fail completely instead of trying to recover from

an error.

Strange then, that years later, web designers would happily

create entire websites using JavaScript, a language that shares

���’s unforgiving error‐handling model. They didn’t call

them websites. They called them web apps. That distinction

was cold comfort to someone who couldn’t complete their

task because a service relied on JavaScript for

crucial functionality.

Despite JavaScript’s fragile error‐handling model, web

designers became more reliant on JavaScript over time. In

2015, ���� relaunched its website as a web app. If you wanted

to read the latest news of the agency’s space exploration

efforts, you first had to download and execute three

megabytes of JavaScript. This content—text and images—

could have been delivered in the ����, but the developers

decided to use Ajax to retrieve this data instead. Until all that

JavaScript was loaded, parsed, and executed, visitors to the site

were left staring at a black background. Perhaps this was

intended as a demonstration of the vast lonely emptiness

of space.

This highlights another difference between ���� and

JavaScript. Whereas ���� can be rendered piece by piece as it

is downloaded, a JavaScript file must be downloaded in its

entirety before its contents can be parsed. While it’s tempting

to think that only a small minority of visitors will miss out on

a site’s JavaScript, the truth is that everybody is a non‐

JavaScript user until the JavaScript has finished loading ...if the

JavaScript finishes loading. Flaky connections, interfering

network operators, and unpredictable ad‐blocking software

can torpedo the assumption that JavaScript will always

be available.

The problem is not with people deliberately disabling

JavaScript in their browsers. Although that’s a use case worth

considering, it’s not the most common cause of JavaScript

errors. Stuart Langridge put together a list of all the potential

points of failure under the title Everyone has JavaScript, right?

Many of those problems would also affect ���� and ��� files,

but because of Postel’s Law, they can recover gracefully.

This doesn’t mean that web designers shouldn’t use JavaScript.

But it does mean that web designers shouldn’t rely on

JavaScript when a simpler solution exists.

The user requests your web app. Has the page loaded

yet? Did the HTTP request for the JavaScript succeed?

Did the HTTP request for the JavaScript complete? Does

the corporate firewall block JavaScript? Does their ISP or

mobile operator interfere with downloaded JavaScript?

Have they switched off JavaScript? Do they have add‐ons

or plug‐ins installed which inject script or alter the DOM

in ways you didn’t anticipate? Is the Content Delivery

Network up? Does their browser support the JavaScript

you’ve written?

“

”

Platform

Web designers who ignored the message of John Allsopp’s A

Dao of Web Design made the mistake of treating the web like

print. The history of print has much to offer—hierarchy,

typography, colour theory—but the web is a fundamentally

different medium. The history of software development also

has much to offer—architecture, testing, process—but again,

the web remains its own medium.

It’s tempting to apply the knowledge and learnings from

another medium to the web. But it is more structurally honest

to uncover the web’s own unique strengths and weaknesses.

The language we use can subtly influence our thinking. In his

book Metaphors We Live By, George Lakoff highlights the

dangers of political language. Obvious examples are “friendly

fire” and “collateral damage”, but a more insidious example is

“tax relief”—before a debate has even begun, taxation has

been framed as something requiring relief.

On the face of it, the term “web platform” seems harmless.

Describing the web as a platform puts it on par with other

software environments. Flash was a platform. Android is a

platform. i�� is a platform. But the web is not a platform. The

whole point of the web is that it is cross‐platform.

A platform provides a controlled runtime environment for

software. As long as the user has that runtime environment,

you can be confident that they will get exactly what you’ve

designed. If you build an i�� app and someone has an i��

device, you know that they will get 100% of your software.

But if you build an i�� app and someone has an Android

device, they will get 0% of your software. You can’t install an

i�� app on an Android device. It’s all or nothing.

The web isn’t as binary as that. If you build something using

web technologies, and someone visits with a web browser, you

can’t be sure how many of the web technologies will be

supported. It probably won’t be 100%. But it’s also unlikely to

be 0%. Some people will visit with i�� devices. Others will

visit with Android devices. Some people will get 80% or 90%

of what you’ve designed. Others will get just 20%, 30%, or

50%. The web isn’t a platform. It’s a continuum.

Thinking of the web as a platform is a category error. A

platform like Flash, i��, or Android provides stability and

certainty, but only under a very specific set of circumstances—

your software must be accessed with the right platform‐

specific runtime environment. The web provides no such

certainty, but it also doesn’t restrict the possible

runtime environments.

Platforms are controlled and predictable. The World Wide

Web is chaotic and unpredictable.

The web is a hot mess.

R E S I L I E N T W E B D E S I G N

� � � � � � � 5 :

Layers

I� ��� ������� ����
How Buildings Learn Stewart Brand highlights an idea by the

British architect Frank Duffy:

Duffy called these shearing layers. Each of the layers moves at

a different timescale. Brand expanded on the idea, proposing

six alliterative layers:

1. Site—the physical location of a building only changes on

a geological timescale.

2. Structure—the building itself can last for centuries.

3. Skin—the exterior surface gets a facelift or a new lick of

paint every few decades.

4. Services—the plumbing and wiring need to be updated

every ten years or so.

5. Space plan—the layout of walls and doors might

change occasionally.

6. Stuff—the arrangement of furniture in a room can

change on a daily basis.

A building properly conceived is several layers

of longevity.“ ”

The idea of shearing layers can also be applied to our creations

on the web. Our domain names are the geological sites upon

which we build. At the other end of the timescale, content on

the web—the “stuff”—can be added and updated by the hour,

the minute, or even the second. In between are the layers of

structure, presentation, and behaviour: ����, ���,

and JavaScript.

Those layers can be loosely‐coupled, but they aren’t

completely independent. Just as a building cannot have

furniture without first having rooms and walls, a style sheet

needs some markup to act upon. The coupling between

structure and presentation is handled through selectors in ���:

element selectors, class selectors, and so on. With JavaScript,

the coupling is handled through the vocabulary of the

Document Object Model, or ���.

In a later book, The Clock Of The Long Now, Stewart Brand

applied the idea of shearing layers—or pace layers—to

civilisation itself. The slowest moving layer is nature, then

there’s culture, followed by governance, then infrastructure,

and finally commerce and fashion are the fastest layers. In a

loosely‐coupled way, each layer depends on the layer below.

In turn, the accumulation of each successive layer enables an

“adjacent possible” filled with more opportunities.

Likewise, the expressiveness of ��� and JavaScript is only made

possible on a foundation of ����, which itself requires a ���

to be reachable, which in turn depends on the HyperText

Transfer Protocol, which sits atop the bedrock of ���/��.

Each of the web’s shearing layers can be peeled back to reveal

a layer below. Running that process in reverse—applying each

layer in turn—is a key principle of resilient web design.

Progressive enhancement

In 2003, the South by Southwest festival in Austin, Texas was

primarily an event for musicians and filmmakers. Today the

music and film portions are eclipsed by the juggernaut of

South by Southwest Interactive, dedicated to all things digital.

In 2003, South by Southwest Interactive was a small affair,

squeezed into one corner of one floor of the Austin

Convention Center. It was a chance for a few web designers

and bloggers to get together and share ideas. That year, Steven

Champeon and Nick Finck presented a talk entitled Inclusive

Web Design For the Future with Progressive Enhancement. They

opened with this call to arms:

Web design must mature and accept the developments of

the past several years, abandon the exclusionary attitudes

formed in the rough and tumble dotcom era, realize the

coming future of a wide variety of devices and platforms,

and separate semantic markup from presentation logic

and behavior.

“

”

Like Tim Berners‐Lee, Steven Champeon had experience of

working with ����, the markup language that would so

heavily influence ����. In dealing with documents that

needed to be repurposed for different outputs, he came to

value the separation of structure from presentation. A

meaningfully marked up document can be presented in

multiple ways through the addition of ��� and JavaScript.

This layered approach to the web allows the same content to

be served up to a wide variety of people. But this doesn’t mean

that everyone gets the same experience. Champeon realised

that a strong separation of concerns would allow

enhancements to be applied according to the capabilities of the

end user’s device.

To paraphrase Karl Marx, progressive enhancement allows

designers to ask from each browser according to its ability, and

to deliver to each device according to its needs.

Do websites need to look exactly the
same in every browser?

Some web designers were concerned that progressive

enhancement would be a creative straitjacket. Designing for

the lowest common denominator did not sound like a recipe

for progress. But this was a misunderstanding. Progressive

enhancement asks that designers start from the lowest

common denominator (a well marked‐up document), but

there is no limit to where they can go from there.

In fact, it’s the very presence of a solid baseline of ���� that

allows web designers to experiment with the latest and

greatest ���. Thanks to Postel’s Law and the loose error‐

handling model of ���, designers are free to apply styles that

only work in the newest browsers.

This means that not everyone will experience the same visual

design. This is not a bug. This is a feature of the web. New

browsers and old browsers; monochrome displays and multi‐

coloured displays; fast connections and slow connections; big

screens, small screens, and no screens; everyone can access your

content. That content should look different in such varied

situations. If a website looks the same on a ten‐year old

browser as it does in the newest devices, then it probably isn’t

taking advantage of the great flexibility that the web offers.

To emphasis this, designer Dan Cederholm created a website

to answer the question, “Do websites need to look exactly the

same in every browser?” You can find the answer to that

question at the ���:

dowebsitesneedtolookexactlythesameineverybrowser.com

At the risk of spoiling the surprise for you, the answer is a

resounding “No!” If you visit that website, you will see that

answer proudly displayed. But depending on the capabilities of

your browser, you may or may not see some of the stylistic

flourishes applied to that single‐word answer. Even if you

don’t get any of the styles, you’ll still get the content marked

up with semantic ����.

Cutting the mustard

Separating structure and presentation is relatively

straightforward. You can declare whatever styles you want,

safe in the knowledge that browsers will ignore what they

don’t understand. Separating structure and behaviour isn’t

quite so easy. If you give a browser some JavaScript that it

doesn’t understand, not only will it not apply the desired

behaviour, it will refuse to parse the rest of the JavaScript.

Before you use a particular feature in JavaScript, it’s worth

testing to see if that feature is supported. This kind of feature

detection can save your website’s visitors from having a

broken experience because of an unsupported feature. If you

want to use Ajax, check first that the browser supports the

object you’re about to use to enable that Ajax functionality. If

you want to use the geolocation ���, check first that the

browser supports it.

A team of web developers working on the ��� news website

referred to this kind of feature detection as cutting the

mustard. Browsers that cut the mustard get an enhanced

experience. Browsers that don’t cut the mustard still get access

to the content, but without the JavaScript enhancements.

Feature detection, cutting the mustard, whatever you want to

call it, is a fairly straightforward technique. Let’s say you want

to traverse the ��� using querySelector and attach

events to some nodes in the document using

addEventListener. Your mustard‐cutting logic might

look something like this:

if (document.querySelector &&
window.addEventListener) {
 // Enhance!
}

There are two points to note here:

1. This is feature detection, not browser detection. Instead

of asking “which browser are you?” and trying to infer

feature support from the answer, it is safer to simply ask

“do you support this feature?”

2. There is no else statement.

Aggressive enhancement

Back when web designers were trying to exert print‐like

control over web browsers, a successful design was measured

in pixel perfection: did the website look exactly the same in

every browser?

Unless every browser supported a particular feature—like, say,

rounded corners in ���—then that feature was off the table.

Instead, designers would fake it with extra markup and

images. The resulting websites lacked structural honesty. Not

only was this a waste of talent and energy on the part of the

designers, it was a waste of the capabilities of modern

web browsers.

The rise of mobiles, tablets, and responsive design helped to

loosen this restrictive mindset. It is no longer realistic to

expect pixel‐perfect parity across devices and browsers. But

you’ll still find web designers bemoaning the fact that they

have to support an older outdated browser because a portion

of their audience are still using it.

They’re absolutely right. Anyone using that older browser

should have access to the same content as someone using the

latest and greatest web browser. But that doesn’t mean they

should get the same experience. As Brad Frost puts it:

Support every browser ...but optimise for none.

Some designers have misunderstood progressive enhancement

to mean that all functionality must be provided to everyone. It’s

the opposite. Progressive enhancement means providing core

functionality to everyone. After that, it’s every browser for

itself. Far from restricting what features you can use,

progressive enhancement provides web designers with a way

to safely use the latest and greatest features without worrying

about older browsers. Scott Jehl of the agency Filament Group

puts it succinctly:

There is a difference between support and optimization.“ ”

Progressive Enhancement frees us to focus on the costs of

building features for modern browsers, without worrying

much about leaving anyone out. With a strongly qualified

codebase, older browser support comes nearly for free.

“
”

If a website is built using progressive enhancement then it’s

okay if a particular feature isn’t supported or fails to load:

Ajax, geolocation, whatever. As long as the core functionality

is still available, web designers don’t need to bend over

backwards trying to crowbar support for newer features into

older browsers.

You also get a website that’s more resilient to JavaScript’s

error‐handling model. Mat Marquis worked alongside Scott

Jehl on the responsive website for the Boston Globe.

He noted:

The trick is identifying what it is considered core functionality

and what is considered an enhancement.

Lots of cool features on the Boston Globe don’t work

when JS breaks; “reading the news” is not one of them.“
”

R E S I L I E N T W E B D E S I G N

� � � � � � � 6 :

Steps

“A����� ������ � ����� ��
considering it in its next larger context”, said the Finnish

architect Eliel Saarinen. “A chair in a room, a room in a house,

a house in an environment, an environment in a city plan.”

At first glance, web design appears to be a kind of graphic

design. Using graphic design tools like Photoshop to design

websites reinforces this view. But to get to the heart of a

website’s purpose, we should consider the interface in its

larger context: what are people trying to accomplish?

When designing for the web, it’s tempting to think in terms of

interactions like swiping, tapping, clicking, scrolling, dragging

and dropping. But very few people wake up in the morning

looking forward to a day of scrolling and tapping. They’re

more likely to think in terms of reading, writing, sharing,

buying and selling. Web designers need to see past the surface‐

level actions to find the more meaningful verbs beneath.

In their book Designing With Progressive Enhancement, the

Filament Group describe a technique they call “the �‐

ray perspective”:

“

If you’re not used to this approach to web design, it can take

some getting used to. But after a while it becomes a habit and

then it’s hard not to examine interfaces in this way. It’s like

trying not to notice bad kerning, or trying not to see the arrow

in the whitespace of the FedEx logo, or trying to not to

remember that all ducks are actually wearing dog masks.

‑ ‑

Here’s a three‐step approach I take to web design:

Taking an X‐ray perspective means looking “through”

the complex widgets and visual styles of a design,

identifying the core content and functional pieces that

make up the page, and finding a simple HTML equivalent

for each that will work universally.

“

”

1. Identify core functionality.

2. Make that functionality available using the simplest

possible technology.

3. Enhance!

Identifying core functionality might sound like it’s pretty

straightforward, and after a bit of practice, it is. But it can be

tricky at first to separate what’s truly necessary from what’s

nice to have.

Information

Let’s say you’re a news provider. That right there is the core

functionality—to provide news. There are many, many other

services you could also provide; interactive puzzles, realtime

notifications, and more. Valuable as those services are, they’re

probably not as important as making sure that people have

access to news.

With that core functionality identified, it’s time to move on

to step two: how can you make that core functionality

available using the simplest possible technology?

Theoretically, a plain text file would be the simplest possible

way of providing the news. But as we’re talking specifically

about the web, let’s caveat this step: how can you make the

core functionality available using the simplest possible web
technology? That would be an ���� file served up at a ���.

Even at this early stage it’s possible to overcomplicate things.

The ���� could be unnecessarily bloated. The ��� could be

unnecessarily verbose; hard to share or recall.

Now that the news has been marked up with the appropriate

���� elements—articles, headings, paragraphs, lists, and

images—it’s time for step three: enhance!

By default, the news will be presented using the browser’s

own stylesheet. It’s legible, but not exactly pleasurable. By

applying your own ���, you can sculpt the content into a more

pleasing shape. Whitespace, leading, colour and contrast are all

at your disposal. You can even use custom fonts—an

enhancement that was impossible on the web for many years.

There’s no guarantee that every browser will be capable of

executing every ��� declaration that you throw at it. That’s

okay. Those browsers will ignore what they don’t understand.

Crucially, the news is still available to everyone, regardless of

the ��� capabilities of their browser.

For browsers on large‐screen devices, you can introduce

layout. It might seem odd at first to think of layout as an

enhancement, but that’s the lesson of mobile‐first responsive

design. Consider the content first, then mark it up with a

sensible source order, then apply layout declarations within

media queries.

Thanks to ever‐evolving nature of ���, there are multiple

ways of applying layout. Like Andy Tannenbaum said:

The nice thing about standards is that you have so many

to choose from.“ ”

Communication

Applying the three‐step process to a news site is relatively

straightforward. Catching up with the news is a fairly passive

act. To really test this process, we need to apply it to

something more interactive.

Suppose we were building a social network. The people using

our tool need to be able to communicate with one another

regardless of where in the world they are. The core

functionality is sending and receiving messages.

Displaying messages in a web browser isn’t difficult. There

might be a lot of complexity on the server involving databases,

syncing, queueing, and load balancing, but the ���� needed

to structure a reverse‐chronological list isn’t very different

from the ���� needed for a news site.

Sending a message from the browser to the web server

requires ���� that is interactive. That’s where forms come in.

In this case, a form with a text input and a submit button

should be enough, at least for the basic functionality.

People can now receive and respond to messages on our social

network, no matter what kind of device or browser they are

using. Now the trick is to improve the experience without

breaking that fundamental activity.

If we were to leave the site in this ����‐only state, I don’t

think we’d be celebrating our company’s ��� anytime soon. To

really distinguish our service from the competition, we need

that third step in the process: enhance!

At the very least, we can apply the same logic we used for the

news site and style our service. Using ��� we can provide

colour, texture, contrast, web fonts, and for larger screens,

layout. But let’s not stop with the presentation. Let’s improve

the interaction too.

Right now this social network has the same kind of page‐

based interaction as a news site. Every time someone sends a

message to the server, the server sends back a whole new page

to the browser. We can do better than that. Time for

some Ajax.

We can intercept the form submission and send the data to the

server using Ajax—I like using the word Hijax to describe this

kind of Ajax interception. If there’s a response from the server,

we can also update part of the current page instead of

refreshing the whole page. This would also be a good time to

introduce some suitable animation.

We can go further. Browsers that support WebSockets can

receive messages from the server. People using those browsers

could get updates as soon as they’ve been sent. It’s even

possible to use peer‐to‐peer connections between browsers to

allow people to communicate directly.

Not every browser supports this advanced functionality.

That’s okay. The core functionality—sending and receiving

messages—is still available to everyone.

Creation

What if our social network were more specialised? Let’s make

it a photo‐sharing service. That raises the bar a bit. Instead of

sending and receiving messages, the core functionality is now

sending and receiving images.

‑

The interface needs to show a reverse‐chronological list of

images. ���� can handle that. Once again we need a form to

send data to the server, but this time it needs to be a file

upload instead of a text field.

With those changes, the core functionality is in place. Time

to enhance.

As well as all the existing enhancements—���, web fonts,

Ajax, WebSockets—we could make use of the File ���

introduced in ����5. This allows us to manipulate the image

directly in the browser. We could apply effects to the image

before sending it to the server. Using ��� filters, we can offer a

range of image enhancements from sepia tones to vignettes.

But if a browser doesn’t support the File ��� or ��� filters,

people can still upload their duck‐facing selfies.

Collaboration

There was a time when using software meant installing

separate programs on your computer. Today it’s possible to

have a machine with nothing more than a web browser

installed on it. Writing emails, looking up contact details,

making calendar appointments, bookkeeping and other

financial tasks can all be done without having to install

bespoke applications. Instead, the act of visiting a ��� can

conjure up the tool you need when you need it.

Delivering software over the web doesn’t just replace the

desktop‐centric way of working. The presence of an internet

connection opens up possibilities for all kinds of collaboration.

Take, for example, the kinds of applications that were once

called “word processors.” As long as those programs were

tethered to individual machines, trying to collaboratively edit

a document was bound to be a tricky task requiring plenty of

coordination, sending files back and forth. Using the web, the

act of sharing a single ��� could allow multiple people to

work on the same document.

Let’s apply the three‐step process to a web‐based

word processor:

The tautological answer would be “processing words.” Not

very helpful. What do people actual do with this software?

They write. They share. They edit.

Identify core functionality.“ ”

Make that functionality available using the simplest

possible technology.“ ”

Looking at our three verbs—writing, sharing, and editing—we

get one of them for free just by using ���s: sharing. The other

two—writing and editing—require the use of a form. A basic

�������� element can act as the receptacle for the words,

sentences, and paragraphs that will make up everything from

technical reports to the great American novel. Submitting that

content to a web server means it can be saved for later.

Technically, that’s a web‐based word processor, accessible to

anyone with a web browser and an internet connection. But

the experience is clunky and dull. It would be a shame not to

take advantage of some of slicker options available in

modern browsers.

Using JavaScript, the humble �������� can be replaced with

a richer editing interface, detecting each keystroke and

applying styling on the fly. Web fonts can make the writing

experience more beautiful. Ajax will allow work to be saved

to the server almost constantly, without the need for a form

submission. WebSockets provide the means for multiple

people to work on the same document at the same time.

Enhance!“ ”

Both Ajax and WebSockets require an internet connection to

work. There’s no guarantee of a stable internet connection,

especially if you’re trying to work on a train or in a hotel.

Modern browsers provide features which, after the initial page

load, can turn the network itself into an enhancement.

If a browser supports some form of local storage, then data can

be stored in a client‐side database. Flaky network connections

or unexpected power outages won’t get in the way of saving

that important document. Using Service Workers, web

developers can provide instructions on what to do when the

browser (or the server) is offline.

These are modern browser features that we should be taking

full advantage of …once we’ve made sure that we’re

providing a basic experience for everyone.

Scale

Ward Cunningham, the creator of the wiki, coined the term

“technical debt” to describe a common problem in the world

of software. Decisions made in haste at the beginning of a

project lead to a cascade of issues further down the line. I like

to think of the three‐step layered approach as a kind of

“technical credit.” Taking the time to provide core

functionality at the beginning gives you the freedom to go

wild with experimentation from then on.

Some people have misunderstood progressive enhancement to

mean foregoing the latest and greatest browser technologies,

but in fact the opposite is true. Taking a layered approach to

building on the web gives you permission to try cutting‐edge

JavaScript ���s, regardless of how many or how few browsers

currently implement them.

We’ve looked at some examples of applying the three‐step

approach to a few products and services—news, social

networking, photo sharing, and word processing. You can

apply this approach to many more services: making and

updating items in a to‐do list, managing calendar

appointments, looking up directions, making reservations at

nearby restaurants. Each one can be built with the

same process:

1. Identify core functionality.

2. Make that functionality available using the simplest

possible technology.

3. Enhance!

This approach works at different scales. It doesn’t just work at

the highest level of the service; it can also be applied at the

level of individual ���s within.

Ask “what is the core functionality of this ���?”, make that

functionality available using the simplest possible technology,

and then enhance from there. This can really clarify which

content is most important, something that’s important in a

mobile‐first responsive workflow. Once you’ve established

that, make sure that content is sent from the server as ����

(the simplest possible technology). Then, using conditional

loading, you could decide to make Ajax requests for

supporting content if the screen real‐estate is available. For the

��� of an individual news story, the story itself would be sent

in the initial response, but related stories or comments could

be pushed from the server only as needed (although you can

still provide links to the related stories and comments

for everyone).

We can go deeper. We can apply the three‐step process at the

scale of individual components within a page. “What is the

core functionality of this component? How can I make that

functionality available using the simplest possible technology?

Now how can I enhance it?”

A component might be designed to be an all‐singing all‐

dancing interactive map. With �‐ray goggles, the core

functionality reveals itself to be something much simpler:

showing a location. Provide the address of that location in

text: the simplest possible technology. Now you can enhance.

It’s worth remembering that enhancements can be provided

on a sliding scale. The first enhancement for a text address

might be to provide a static image. The next level up from

that would be to swap out the static image with an interactive

Ajax‐powered slippy map. If a browser supports the

geolocation ���, you could show the distance to the location.

Layer on some animations and transitions to help convey the

directions better.

Site navigation is another discrete component that lends itself

well to a sliding scale of enhancements. The core functionality

of navigation is to provide links to resources. The simplest—

and still the best—technology to enable that is the humble

hyperlink. A list of links should do the trick. With that in

place, you are now free to enhance it into something really

compelling. Off‐canvas navigation, progressive disclosure,

sliding, swiping, fading, expanding …the sky’s the limit.

Because enhancements can be layered on according to the

capabilities of each browser, it quickly becomes clear that this

approach doesn’t simply reduce down to having two versions

of everything (the basic version and the enhanced version).

Instead the service, the ���s, and the components you are

designing could be experienced in any number of ways. And

that’s okay.

Websites do not need to look exactly the same in

every browser.

R E S I L I E N T W E B D E S I G N

� � � � � � � 7 :

Challenges

T�� ������ ������

conference on hypertext took place in San Antonio, Texas in

December 1991. Tim Berners‐Lee’s World Wide Web project

was starting to take shape then. Thinking the conference

organisers and attendees would appreciate the project, he

submitted a proposal to Hypertext ’91. The proposal

was rejected.

The hypertext community felt that the World Wide Web

project was far too simplistic. Almost every other hypertext

system included the concept of two‐way linking. If a resource

moved, any links pointing to that resource would update

automatically. The web provided no such guarantees. Its

system of linking was much simpler—you just link to

something and that’s it. To the organisers of Hypertext ’91,

this seemed hopelessly naïve. They didn’t understand that the

simplicity of the web was actually its strength. Because linking

was so straightforward, anyone could do it. That would prove

to be crucial in the adoption and success of the

World Wide Web.

It’s all‐too tempting to quickly declare that an approach is

naïve, overly simplistic, and unrealistic. The idea that a

website can simultaneously offer universal access to everyone

while also providing a rich immersive experience for more

capable devices …that also seems hopelessly naïve.

This judgement has been handed down many times over the

history of the web.

“This is too simple”

When the Web Standards Project ran its campaign

encouraging designers to switch from �����s for layout to ���,

it was met with resistance. Time and time again they were

criticised for their naïvety. “Sure, a ���‐based layout might be

fine for a simple personal site but there’s no way it could scale

to a large complex project.”

Then Doug Bowman spearheaded the ���‐based redesign of

Wired.com and Mike Davidson led the ���‐based redesign of

����.com. After that the floodgates opened.

When Ethan Marcotte demonstrated the power of responsive

design, it was met with resistance. “Sure, a responsive design

might work for a simple personal site but there’s no way it

could scale to a large complex project.”

Then the Boston Globe launched its responsive site. Microsoft

made their homepage responsive. The floodgates

opened again.

It’s a similar story today. “Sure, progressive enhancement

might work for a simple personal site, but there’s no way it

could scale to a large complex project.”

The floodgates are ready to open. We just need you to create

the poster child for resilient web design.

“This is too difficult”

Building resilient websites is challenging. It takes time to apply

functionality and features in a considered layered way. The

payoff is a website that can better react to unexpected

circumstances—unusual browsers, flaky network connections,

outdated devices. Nonetheless, for many web designers, the

cost in time seems to be too high.

It’s worth remembering that building with progressive

enhancement doesn’t mean that everything needs to be made

available to everyone. Instead it’s the core functionality that

counts. If every single feature needed to be available to every

browser on every device, that would indeed be an impossibly

arduous process. This is why prioritisation is so important. As

long as the core functionality is available using the simplest

possible technology, you can—with a clear conscience—layer

on more advanced features.

Still, it’s entirely possible that this approach will result in

duplicated work. If you build an old‐fashioned client‐server

form submission process and then enhance it with JavaScript,

you may end up repeating the form‐processing on the client as

well as the server. That can be mitigated if you are also using

JavaScript on the server. It’s theoretically possible to write

universal JavaScript so that the server and browser share a

single codebase. Even without universal JavaScript, I still think

it’s worth spending time to create technical credit.

The ��’s Government Service design manual provides an even

shorter form of the three‐step process I’ve outlined:

1. First, just make it work

2. Second, make it work better

The design manual also explains why:

This kind of resilience means that the time you spend up‐front

is well invested. You might also notice an interesting trend;

the more you use this process, the less time it will take.

If you build pages with the idea that parts other than

HTML are optional, you’ll create a better and stronger

web page.

“
”

Moving from �����s to ��� seemed like an impossibly

idealistic goal. Designers were comfortable using ����� and

���� elements for layout. Why would they want to learn a

whole new way of working? I remember how tricky it was to

make my first ���‐based layouts after years of using hacks. It

took me quite some time. But my second ���‐based layout

didn’t take quite so long. After a while, it became normal.

Designers comfortable with fixed‐width layouts had a hard

time with responsive design. That first flexible layout was

inevitably going to take quite a while to build. But the second

flexible layout didn’t take quite so long. After a while, it

became normal.

It’s no different with the layered approach needed for building

resilient websites. If you’re not used to working this way, the

first time you do it will take quite some time. But the second

time won’t take quite so long. After a while, it will

become normal.

There may well be situations where the three‐step approach

won’t work, but they’re not as common as you might think. If

you’re building a 3� game in a web browser, the simplest

technology capable of providing the core functionality will

still be pretty complex. That said, I’d love to see a text‐only

adventure game get enhanced into a first‐person shooter.

“How do I convince…?”

The brilliant computer scientist Grace Hopper kept an

unusual timepiece on her wall. It ran counter‐clockwise.

When quizzed on this, she pointed out that it was an arbitrary

convention, saying:

Humans are allergic to change. They love to say, “We’ve

always done it this way.” I try to fight that. That’s why

I have a clock on my wall that runs counter‐clockwise.

“

”

Behaviour change is hard. Even if you are convinced of the

benefits of a resilient approach to web design, you may find

yourself struggling to convince your colleagues, your boss, or

your clients. It was ever thus. Take comfort from the history

of web standards and responsive design. Those approaches

were eventually adopted by people who were

initially resistant.

Demonstrating the benefits of progressive enhancement can be

tricky. Because the payoff happens in unexpected

circumstances, the layered approach is hard to sell. Most

people will never even know whether or not a site has been

built in a resilient way. It’s a hidden mark of quality that will

go unnoticed by people with modern browsers on new devices

with fast network connections.

For that same reason, you can start to implement this layered

approach without having to convince your colleagues, your

boss, or your clients. If they don’t care, then they also won’t

notice. As Grace Hopper also said, “it’s easier to ask

forgiveness than it is to get permission.”

Tools

Changing a workflow or a process can be particularly

challenging if it clashes with the tools being used. A tool is

supposed to help people get their work done in a more

efficient way. The tool should be subservient to the workflow.

All too often, tools instead dictate a preferred way of working.

Whether it’s ������� editors, graphic design programs,

content management systems, or JavaScript frameworks, tools

inevitably influence workflows.

If you are aware of that influence, and you can recognise it,

then you are in a better position to pick and choose the tools

that will work best for you. There are many factors that play

into the choice of frameworks, for example: “Is it well‐

written?”, “Does it have an active community behind it?”,

“Does it have clear documentation?”. But perhaps the most

important question to ask is, “Does its approach match my

own philosophy?”

Every framework has a philosophy because every framework

was written by people. If your philosophy aligns with that of

the framework, then it will help you work more efficiently.

But if your philosophy clashes with that of the framework,

you will be fighting it every step of the way. It might even be

tempting to just give up and let the framework dictate your

workflow. Then the tail would be wagging the dog.

Choose your tools wisely. It would be a terrible shame if you

abandoned the resilient approach to web design because of a

difference of opinion with a piece of software.

Differences of opinion often boil down to a mismatch in

priorities. At its heart, the progressive enhancement approach

prioritises the needs of people, regardless of their technology.

Tools, frameworks, and code libraries, on the other hand, are

often built to prioritise the needs of designers and developers.

That’s not a bad thing. Developer convenience is hugely

valuable. But speaking personally, I think that user needs

should trump developer convenience.

When I’m confronted with a problem, and I have the choice

of making it the user’s problem or my problem, I’ll make it

my problem every time. That’s my job.

Future friendly

In September of 2011, I was speaking at a conference in

Tennessee along with some people much smarter than me.

Once the official event was done, we lit out for the

countryside where we had rented a house for a few days. We

were gathering together to try to figure out where the web

was headed.

‑

We were, frankly, freaked out. The proliferation of mobile

devices had changed everything. Tablets were on the rise.

People were talking about internet ��s. We were hoping to

figure out what the next big thing would be. Internet‐enabled

fridges, perhaps?

In the end, the only thing we could be certain of

was uncertainty:

That isn’t cause for despair; it’s cause for celebration. We

could either fight this future or embrace it. Realising that it

was impossible to be future‐proof, we instead resolved to be

future-friendly:

1. Acknowledge and embrace unpredictability.

2. Think and behave in a future-friendly way.

3. Help others do the same.

Disruption will only accelerate. The quantity and

diversity of connected devices—many of which we haven’t

imagined yet—will explode, as will the quantity and

diversity of the people around the world who use them.

“

”

That first step is the most important: acknowledging and

embracing unpredictability. That is the driving force behind

resilient web design. The best way to be future-friendly is to

be backwards‐compatible.

Assumptions

“We demand rigidly‐defined areas of doubt and uncertainty!”

cried the philosophers in Douglas Adams’ Hitchhiker’s Guide

To The Galaxy.

As pattern‐matching machines, we are quick to identify trends

and codify them into assumptions. Here are just some

assumptions that were made over the history of web design:

Everyone has a monitor that is 640 pixels wide.

Everyone has the Flash plugin installed.

Everyone has a monitor that is 800 pixels wide.

Everyone has a mouse and a keyboard.

Everyone has a monitor that is 1024 pixels wide.

Everyone has a fast internet connection.

The proliferation of mobile devices blew those assumptions

out of the water. The rise of mobile didn’t create new

uncertainties—instead it shone a light on the uncertainties that

already existed.

That should have been a valuable lesson. But before too long

the old assumptions were replaced with new ones:

There are some activities that people will never want to

do on their phones.

Every phone has a touch screen.

Everyone using a phone is in a hurry.

Every browser on every phone supports JavaScript.

These kind of assumptions always remind me of old physicist

jokes. “Assume a perfectly spherical web browser…”

Assumptions are beguiling. If only we could agree on certain

boundaries, then wouldn’t web design be so much easier

to control?

As tempting as this siren call is, it obfuscates the true nature of

the ever‐changing uncertain web. Carl Sagan put it best in his

book The Demon‐Haunted World:

“

It is far better to grasp the universe as it really is than to

persist in delusion, however satisfying and reassuring.“ ”

The future

I wish I could predict the future. The only thing that I can

predict for sure is that things are going to change.

I don’t know what kind of devices people will be using on the

web. I don’t know what kind of software people will be using

on the web.

The future, like the web, is unknown.

The future, like the web, will be written by you.

R E S I L I E N T W E B D E S I G N

About the
author

M� ���� �� J����� K����.
I make websites at Clearleft, the design agency I co‐founded

in 2005. My online home is adactio.com where I’ve been

jotting down my thoughts for over fifteen years.

Before writing Resilient Web Design I wrote the books DOM

Scripting, Bulletproof Ajax, and HTML5 For Web Designers.

My email address is jeremy@adactio.com if you’d like to drop

me a line.

